機能改善 領収データ発行機能にてインボイス制度の書式での出力に対応しました。 詳しくはこちらをご覧ください。

新機能 参加者によるイベント出席機能をリリースしました。今までは主催者による出席管理機能はありましたが、大規模イベント等での受付処理が大変とのフィードバックをいただいてました。今後はイベント作成時に発行される「出席コード」を会場現地や配信で共有してもらうことで、参加者自身でイベント出席登録を行うことができるようになります。これにより受付処理が容易になりますので、イベント主催者の皆様はぜひご活用ください。詳しくはこちらのニュース特集ページ をご確認ください。

このエントリーをはてなブックマークに追加

Oct

6

PythonによるRNN・LSTM入門

Registration info

教室受講(1週間閲覧可能な復習用動画の配布あり)

3900 (Pre-pay)

FCFS
1/3

オンライン受講(動画は開講日より1週間閲覧可能)

3900 (Pre-pay)

FCFS
1/3

About Prepayment

About Prepayment Contact Info:

(Only shown to attendees.)

Cancel/Refund Policy:

前払いの方で急遽参加できなくなってしまった場合は、動画(一部講座のみ)・資料配布またはキャンセルに応じます。
連絡先のメールアドレスまたはLINE@(推奨)にご連絡ください。キャンセルの場合は、開催日の4日前までのご連絡に限り、払い戻し手数料を差し引いた金額を返金いたします。それ以降は返金には応じ兼ねますのでご了承ください。

Print receipt data:

発行しない (詳しくはこちら)

Description

PythonによるRNN・LSTM入門

概要

本講座のテーマはRNN・LSTM(再帰型ニューラルネットワーク)です。講座内では、RNNやLSTMのメカニズムを解説しながらKerasを用いた実装をハンズオン形式で行います。

現在RNNは時系列データの解析や自然言語処理の手法として使用され、機械翻訳などにおいて大きな成果をあげています。また、自然言語処理においては音声認識技術と合わせて音声による指示や会話など、多くの用途に応用されています。

本講座ではRNNの基礎をわかりやすく解説し、実際にKerasで実装することでその威力を体験していただきます。受講後は、理論ベースでRNN・LSTMの仕組みを理解し、実装も可能になっていることを目指します。

【参加条件】
- Python3の基本文法を理解している方
- Kerasで単純なニューラルネットワーク(多層パーセプトロン)を写経でも構築したことがある方

上記の条件を満たしていない方は以下の講座を合わせて受講していただくことをこ検討ください。
- Python3の基本文法に不安のある方は、Python入門講座
- tensorflowを用いたニューラルネットワーク構築のハンズオンを体験したい方は、【tensorflowで学ぶ】ディープラーニング実装入門
- ニューラルネットワークの基本原理を学びたい方は、 【ゼロから学ぶ】ディープラーニング理論入門

※本講座は、動画復習対応講座でございます。受講した翌日から1週間、動画を公開いたします。聞き逃してしまった箇所の補填やより深い理解のためにお役立ていただけると幸いです!

この講座で得られること

  • RNN・LSTMの基本的なメカニズムとkerasによる実装方法の習得
  • RNNで何ができるか俯瞰的に捉えられる

カリキュラム

  • 系列データ
  • RNNの概要・応用例
  • SimpleRNN
  • LSTM
  • Kerasによる実装
  • RNNの発展


※内容は一部変更になることがございます。

講座一覧のフローチャート

どの講座から受講したら良いのかわからないというような方は、下記のフローチャートを参考にしていただければと思います。

Alt text

事前準備・持ち物

Python3をインストールしたPCの持参をお願いいたします.

また以下のライブラリをインストールするようにお願いいたします。

  • jupyter notebook
  • numpy
  • keras
  • matplotlib

また,講義はJupyter Notebookを用いて行いますので,インストール頂いたほうがスムーズに講座を受けることが可能です.
※インストールでお困りの方はinfo@to-kei.netまでご連絡いただければ、可能な範囲で対応致します。

こんな人におすすめ

  • 最短ルートでRNNやLSTMを学びたい方
  • 自然言語処理や時系列のデータを扱いたい方
  • 人工知能を利用した事業などに興味がある方

講師

神津陽信
慶應義塾大学管理工学科卒業。現在は、主に機械学習を用いた製造業における諸問題へ取り組んでいる。機械学習と時系列データ、生産管理に精通。AIコンサルタントとして、多数のプロジェクトに携わる。

(オンライン動画、復習用動画は別講師の場合があります。)

領収書

【Stripeで事前決済の方】
クレジットカード会社が発行する明細を領収書の代わりとしてご利用ください。

【Paypalの方】
決済処理後にPaypalから送付されるメール内容、またはPaypalの取引履歴から該当項目を確認の上、「詳細」をご覧ください。それらが領収書の代わりとなります。また、クレジットカード会社発行の利用明細書も領収書としてご利用いただけます。

【別途領収書発行が必要な方】
別途発行手数料として1000円頂きます。必要な方は、以下のフォームよりご申請ください。領収書発行手数料と受講料金を合算した金額で発行いたします。
全人類がわかる統計学 領収書発行フォーム

受付・入場時間

開始の10分前から
(なるべく5分前までにお入りください。)

❇️オンライン受講でお申し込みいただいた方は、セミナールームにてご参加いただくことはできません。ネット環境のある場所での受講をお願いいたします。

ポータルサイト会員登録のお願い

全人類がわかる統計学では、ポータルサイトを使って講座で扱う教材を受講者の皆様に共有いたします。 初めて全人類がわかる統計学の講座に参加される方は、あらかじめこちらより会員登録をお願いいたします。

問い合わせ

・メールでのお問い合わせは、info@to-kei.net までご連絡ください。
・こちらで⇨LINE@からもお問い合わせいただけます。(推奨)

注意事項

  • 講義のコンテンツは全て「全人類がわかる統計学」に帰属していますので、複製はご遠慮ください。
  • 個人ブログへの講義コンテンツの掲載はご遠慮ください。
  • リクルーティング、勧誘、採用活動など、目的に沿わない行為につきまして、主催者が相応しくないと判断した場合は即刻退出処分とします。全員が気持ちよく過ごすことが出来るよう、ご協力をお願い致します。
  • 最小遂行人数は「3名」です。開催日の前日までにこの人数に達しない場合は中止となります。ただし、複数の媒体で募集を行っているので、本サイトの申込者数が最小遂行人数に達しない場合でも開催になる場合がございます。もし、中止が決定した場合はその時点で「全額返金」し、登録しているメールアドレスにご連絡させていただきます。

全人類がわかる統計学とは

株式会社AVILENが運営するサービスです。統計学・機械学習の学習用サイト全人類がわかる統計学を運営、管理するほか、社会人向けのAI人材やデータサイエンティスト育成のための教育事業を行なっております。 統計学や機械学習を、出来るだけわかりやすく多くの人々に届けるということを目指して活動しています。

Media View all Media

If you add event media, up to 3 items will be shown here.

Feed

avilen

avilen published PythonによるRNN・LSTM入門.

09/23/2019 14:43

PythonによるRNN・LSTM入門 を公開しました!

Group

AVILEN

AIスペシャリスト集団

Number of events 948

Members 1139

Ended

2019/10/06(Sun)

19:00
22:00

Registration Period
2019/09/23(Mon) 14:42 〜
2019/10/06(Sun) 19:00

Location

秋葉原駅徒歩5分

台東区台東1丁目11番4号 誠心Oビル3F

Organizer

Attendees(2)

mohira

mohira

PythonによるRNN・LSTM入門 に参加を申し込みました!

YujiAriyasu

YujiAriyasu

PythonによるRNN・LSTM入門に参加を申し込みました!

Attendees (2)